MASTER OF PHILOSOPHY
(M. PHIL.)
DEGREE IN BOTANY

Proposed Syllabus

Department of Botany
University of North Bengal
Raja Rammohunpur
Dist- Darjeeling
Pin-734014
West Bengal

2/12/19
Dr. S. C. Roy
Professor & Head
Department of Botany
University of North Bengal
COURSE STRUCTURE FOR TWO YEAR M.PHIL. DEGREE

BOTANY

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course code</th>
<th>Title of paper</th>
<th>Mode</th>
<th>Marks</th>
<th>Credit</th>
<th>No. of Hours per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Course -I</td>
<td>Research Methodology</td>
<td>Theory</td>
<td>100</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Practical</td>
<td>100</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>II</td>
<td>Course-II</td>
<td>Advanced Course in Botany</td>
<td>Theory</td>
<td>100</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Practical</td>
<td>100</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>III</td>
<td>Course-III</td>
<td>Analytical Techniques in Plant Sciences</td>
<td>Theory</td>
<td>100</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Practical</td>
<td>100</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>IV</td>
<td>Course-IV</td>
<td>Research work and viva voce</td>
<td>Dissertation</td>
<td>200</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td></td>
<td></td>
<td>800</td>
<td>40</td>
<td>80</td>
</tr>
</tbody>
</table>

Dr. S. C. Roy
Professor & Head
Department of Botany
University of North Bengal
FIRST SEMESTER

Course Code-I: Research Methodology (Theoretical)
Marks: 100

1. **Introduction to Research**: Reflection, Science and Research. Basic and applied research. Essential steps in research. Literature collection- Need for review of literature; review process and bibliography; research reading; consulting source material. Literature citation. List of References. Citation-sequence system, Alphabet-Number system.

5. **Microbial world**: General account of viruses and bacteria (structure, replication / reproduction and economic importance), Biological nitrogen fixation.

Course Code-I: Research Methodology (Practical)
Marks: 100

1. Data collection, review of literature and preparation of research report. Citation of references. How to write a research paper.

2. Study of experimental designs, different sampling techniques. Experimental error, Replication, Controls, Measurement.

3. Windows and networking essentials. Internet and Linux operating system. Biological and chemical database-Sequences, enzymes, Data Bank-GenBank, PDB. DATA mining and Data curation.

4. Study of pH meter and preparation of different pH solutions.

5. Preparation of different stock solutions, working solutions, Buffer solutions, molar and normal solutions.

6. Differential staining (Gram positive and negative), Endospore staining.

7. Isolation of bacteria using streak-plate, pour plate and spread plate technique.

8. Isolation and enumeration of viable microorganisms from soil by serial dilution-agar plate method.

10. Antibiotics sensitivity tests.
SECOND SEMESTER

Course Code-II: Advance Course in Botany (Theoretical)
Marks: 100

1. **Molecular Taxonomy and Biosystematics**: Scope; Methods in Molecular taxonomy and Systematics; Processing molecular data and Phylogenetic inference using different Methods (Parsimony, Maximum Likelihood, Bayesian); Use of Chloroplast, Nuclear and Mitochondrial DNA sequences in Plant systematics; Phylogenetic trees and concepts; Applications of molecular Phylogenetics.

2. **Mycology and Molecular Plant Pathology**: Fungal biodiversity; Fungi in biotechnology; Fungi in Genetic Research; Endophytic fungi and their importance; Fungal interactions and practical exploitation; Major groups of plant pathogenic fungi. Host specialized necrotrophic pathogens; Mycorrhizae (VAM) and significance. Plant disease diagnosis and diagnostics; Molecular biology of Plant-Microbe interaction; R-genes and R gene mediated disease resistance; Genetic engineering and crop protection: Engineering resistance to viral, bacterial, fungal and insect diseases of crop plants. Potential of plant derived genes in the genetic manipulation of crops for insect resistance. Gene silencing and control of viral diseases.

3. **Medical Botany**: Medicinal plant research scenario in India; Diagnostic features, bioactive molecules and therapeutic value of some common medicinal plants; Standardization of herbal drugs; Nutraceuticals and medicinal food; Bioprospecting, bio-piracy and protection of traditional medicinal knowledge (IPR). Methods of Plant Analysis; Phenolic compounds; Terpenoids; Alkaloids and other nitrogenous secondary metabolites; Organic acids, lipids and related compounds; Sugars and their derivatives; Macromolecules, peptides.

5. **Ecology and Conservation Biology**: Scope of ecology; Community organization-concept of habitat, functional role and niche, key stone species, dominant species, ecotone, edge effect. Natural Resources, Global warming and catastrophic threat to global biological diversity; Degradation and Restoration of Natural Ecosystems; Remote Sensing and its applications; Resource Policies, Conflict Management, Environmental Planning, International Environmental Policies and organizations and conventions.
Course Code-II: Advance Course in Botany (Practical)
Marks: 100

1) Collection, fixation and processing plant materials, Embedding, Microtomy, Staining, Double staining.
2) Photomicrography, Camera Lucida drawings.
3) Assessment of plant and microbial biodiversity by different methods. Biodiversity maps of India.
4) Processing of morphological and molecular data and construction of a Phylogenetic tree using different Methods (Parsimony, Maximum Likelihood, Bayesian).
5) Estimation of polyphenols in diseased and healthy plants.
6) Isolation and study of endophytic fungi.
7) Study of interactions among fungi and their practical application.
8) Study of major groups of plant pathogenic fungi.
9) Study of Mycorrhizas (VAM). Chemical control of fungal growth.
10) Analysis of phenols, alkaloids, saponins, volatile oils, hydrocarbons, flavonoids, sugars in different plants.

THIRD SEMESTER

Course Code-III: Analytical Techniques in Plant Sciences (Theoretical)
Marks: 100

1. Imaging and related Techniques: Principles of microscopy, Principles and applications of light microscopy, fluorescence microscopy, phase contrast, confocal microscopy and electron microscopy (Transmission and scanning electron microscopy).
2. Chromatography and spectroscopy: principles and application of following: paper chromatography, column chromatography, thin layer chromatography, molecular exclusion, ion exchange, partition, adsorption and affinity chromatography; HPLC and GC. Principles and applications of UV-VIS, Mass, Infra-Red and NMR Spectroscopy
4. Biostatistics: Statistics, data, population, samples, parameters, tabulation of data, graphical and diagrammatic, measures of dispersion, variance, mean deviation, standard deviation, correlation and regression analysis, binomial and poison distribution, test of hypothesis, ANOVA, Bivariate and multivariate analysis.
5. Bioinformatics: Introduction to Bioinformatics; Databases; Applications of Bioinformatics; Bioinformatics in business areas; Techniques in bioinformatics; Searching for genes; Bioinformatic Tools; Career and Training in Bioinformatics; Bioinformatics centres in India.
2. Determination of Sugars, Amino acids by Thin layer chromatography techniques.
4. Separation of Alkaloids by column chromatography.
5. Isolation of Nucleic acid from plant tissues by CTAB method.
6. Isolation of genomic and plasmid DNA from bacteria, and purification by agarose gel electrophoresis.
7. Applications of biostatistics- Data; Measures of central Tendency; Measures of Dispersion; Tests of Significance; Student T Test; The Chi-Square test; Probability; Correlation; Regression.
9. Pair Wise Sequence Alignment ALIGN, Multiple Sequence Alignment-ClustalW.
Protein software-ExPASy
10. Bioinformatics organization-NCBI, EBI, TIGR
FOURTH SEMESTER

Course Code-IV: M. Phil. Research Work
Marks: 200

1. M. Phil thesis
 The research guide shall give research topic for the research work and thesis
 The thesis shall be evaluated both by research guide (75) and external examiner (75)

2. Viva voce of thesis
 Viva-Voce examination by external examiner 15

3. Pre-submission of M. Phil thesis
 Student will present his/her research work before thesis submission and shall be examined by Departmental Research Committee 15

4. Report on field work/Industry visit/Institute visit

5. Internal assessment
 Based on
 1. Overall attendance for all the four semesters.
 2. Sincerity

Total marks 200
Scheme of Examination for M.Phil Botany

First / Second / Third Semester

Scheme of Examination (Theory)

Time - 4 Hrs

<table>
<thead>
<tr>
<th>Question</th>
<th>Details</th>
<th>Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Objective Questions: Ten in numbers (all compulsory)</td>
<td>2 × 10 = 20</td>
</tr>
<tr>
<td>Q2-Q6</td>
<td>Broad answer type questions: Five in numbers (with adequate choices)</td>
<td>16 × 5 = 80</td>
</tr>
</tbody>
</table>

Scheme of Examination (Practical)

Time - 6 Hours

<table>
<thead>
<tr>
<th>Question</th>
<th>Details</th>
<th>Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Conduct the experiment ‘A’, record data, analyse and draw inferences.</td>
<td>25 Marks</td>
</tr>
<tr>
<td>Q2</td>
<td>Conduct the experiment ‘B’, analyse the data and draw inferences.</td>
<td>25 Marks</td>
</tr>
<tr>
<td>Q3</td>
<td>Conduct the experiment ‘C’, analyse the data and draw inferences.</td>
<td>25 Marks</td>
</tr>
<tr>
<td>Q4</td>
<td>Practical records</td>
<td>10 Marks</td>
</tr>
<tr>
<td>Q5</td>
<td>Viva voce</td>
<td>15 Marks</td>
</tr>
</tbody>
</table>

Fourth Semester

Scheme of Examination

Evaluation of M.Phil Thesis, Viva-voce and Field report

200 Marks